综合智慧能源 ›› 2022, Vol. 44 ›› Issue (5): 1-14.doi: 10.3969/j.issn.2097-0706.2022.05.001
葛磊蛟1(), 崔庆雪1(
), 李明玮2, 姚芳2, 杨晓娜2, 杜天硕1(
)
收稿日期:
2021-12-26
修回日期:
2022-03-15
出版日期:
2022-05-25
作者简介:
葛磊蛟(1984),男,副教授,博士,从事智能配电网态势感知、新能源并网优化控制和智能配用电大数据云计算技术等方面的研究, legendglj99@tju.edu.cn基金资助:
Leijiao GE1(), Qingxue CUI1(
), Mingwei LI2, Fang YAO2, Xiaona YANG2, Tianshuo DU1(
)
Received:
2021-12-26
Revised:
2022-03-15
Published:
2022-05-25
摘要:
为实现国家碳中和、碳达峰的能源战略目标,利用光伏/风电等绿色能源制氢是一条重要技术途径,但光伏/风电等绿色能源的强波动性会严重影响电解水制氢系统的动态适应性和运行可靠性。介绍了风力、光伏及风光互补等波动性电源制氢技术的特点,对比分析了电解水制氢技术的原理及经济性。针对波动性电源电解水制氢面临的发展困境,提出了高效稳定的风光波动性电源电解水制氢的技术路线预想,聚焦系统优化配置、运行过程稳定控制和高效延寿控制3个核心技术,以延寿控制管理为最终目标,有力保障风光波动性电源电解水制氢系统安全、稳定、经济运行,以期为风-光-氢产业链的良性发展提供思路。
中图分类号:
葛磊蛟, 崔庆雪, 李明玮, 姚芳, 杨晓娜, 杜天硕. 风光波动性电源电解水制氢技术综述[J]. 综合智慧能源, 2022, 44(5): 1-14.
Leijiao GE, Qingxue CUI, Mingwei LI, Fang YAO, Xiaona YANG, Tianshuo DU. Review on water electrolysis for hydrogen production powered by fluctuating wind power and PV[J]. Integrated Intelligent Energy, 2022, 44(5): 1-14.
[1] |
KAKOULAKI G, KOUGIAS I, TAYLOR N, et al. Green hydrogen in Europe-A regional assessment: Substituting existing production with electrolysis powered by renewables[J]. Energy Conversion and Management, 2020, 228:113649.
doi: 10.1016/j.enconman.2020.113649 |
[2] |
GÖTZ M, LEFEBVRE J, MÖRS F, et al. Renewable Power-to-gas: A technological and economic review[J]. Renewable Energy, 2016, 85: 1371-1390.
doi: 10.1016/j.renene.2015.07.066 |
[3] | 迟军, 俞红梅. 基于可再生能源的水电解制氢技术(英文)[J]. 催化学报, 2018, 39(3): 390-394. |
CHI Jun, YU Hongmei. Water electrolysis based on renewable energy for hydrogen production[J]. Chinese Journal of Catalysis, 2018, 39(3): 390-394.
doi: 10.1016/S1872-2067(17)62949-8 |
|
[4] |
ACAR C, DINCER I. Comparative assessment of hydrogen production methods from renewable and non-renewable sources[J]. International Journal of Hydrogen Energy, 2014, 39(1): 1-12.
doi: 10.1016/j.ijhydene.2013.10.060 |
[5] |
CHEN Q, LV M, GU Y, et al. Hybrid energy system for a coal-based chemical industry[J]. Joule, 2018, 2(4):607-620.
doi: 10.1016/j.joule.2018.02.015 |
[6] | 王靖, 蒋迎花, 康丽霞, 等. 可再生能源制氢与波动氢气负荷耦合系统的调控策略[J]. 高校化学工程学报, 2021, 35(2): 336-347. |
WANG Jing, JIANG Yinghua, KANG Lixia, et al. Regulating strategies for coupling systems to match hydrogen production using renewable energy with fluctuating hydrogen demands[J]. Journal of Chemical Engineering of Chinese Universities, 2021, 35(2):336-347. | |
[7] | 蔡国伟, 陈冲, 孔令国, 等. 风电/光伏/制氢/超级电容器并网系统建模与控制[J]. 电网技术, 2016, 40(10):2982-2990. |
CAI Guowei, CHEN Chong, KONG Lingguo, et al. Modeling and control of grid-connected system of wind/PV/electrolyzer and SC[J]. Power System Technology, 2016, 40(10):2982-2990. | |
[8] |
FANG Ruiming, LIANG Yin. Control strategy of electrolyzer in a wind-hydrogen system considering the constraints of switching times[J]. International Journal of Hydrogen Energy, 2019, 44(46): 25104-25111.
doi: 10.1016/j.ijhydene.2019.03.033 |
[9] | HOSSAIN M M, SHEIKH M, MD P K. Cooperatively controlling of grid connected DFIG based wind turbine with hydrogen generation system[C]// International Conference on Electrical & Electronic Engineering. IEEE, 2016. |
[10] | 黄大为, 齐德卿, 于娜, 等. 利用制氢系统消纳风电弃风的制氢容量配置方法[J]. 太阳能学报, 2017, 38(6): 1517-1525. |
HUANG Dawei, QI Deqing, YU Na, et al. Capacity allocation method of hydrogen production system consuming abandoned wind power[J]. Acta Energiae Solaris Sinica, 2017, 38(6): 1517-1525. | |
[11] |
DINH V N, LEAHY P, MCKEOGH E, et al. Development of a viability assessment model for hydrogen production from dedicated offshore wind farms[J]. International Journal of Hydrogen Energy, 2021, 46(48):24620-24631.
doi: 10.1016/j.ijhydene.2020.04.232 |
[12] | HUANG C J, ZONG Y, YOU S, et al. Cooperative control of wind-hydrogen-SMES hybrid systems for fault-ride-through improvement and power smoothing[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(8):3103729. |
[13] |
KHAN M J, IQBAL M T. Analysis of a small wind-hydrogen stand-alone hybrid energy system[J]. Applied Energy, 2009, 86(11): 2429-2442.
doi: 10.1016/j.apenergy.2008.10.024 |
[14] |
DIXON C, REYNOLDS S, RODLEY D, et al. Micro/small wind turbine power control for electrolysis applications[J]. Renewable Energy, 2016, 87:182-192.
doi: 10.1016/j.renene.2015.09.055 |
[15] | 陈宏善, 魏花花. 利用太阳能制氢的方法及发展现状[J]. 材料导报, 2015, 29(11): 36-40. |
CHEN Hongshan, WEI Huahua. The methods and development status for hydrogen production from water-splitting using solar energy[J]. Materials Review, 2015, 29(11): 36-40. | |
[16] | 张娜, 葛磊蛟. 基于SOA优化的光伏短期出力区间组合预测[J]. 太阳能学报, 2021, 42(5): 252-259. |
ZHANG Na, GE Leijiao. Photovoltaic system short-term power interval hybrid forecasting method based on seeker optimization algorithm[J]. Acta Energiae Solaris Sinica, 2021, 42(5): 252-259. | |
[17] |
DAHBI S, ABOUTNI R, AZIZ A, et al. Optimised hydrogen production by a photovoltaic-electrolysis system DC/DC converter and water flow controller[J]. International Journal of Hydrogen Energy, 2016, 41(45): 20858-20866.
doi: 10.1016/j.ijhydene.2016.05.111 |
[18] |
ŞAHIN M E, OKUMUŞ H I, AYDEMIR M T. Implementation of an electrolysis system with DC/DC synchronous buck converter[J]. International Journal of Hydrogen Energy, 2014, 39(13):6802-6812.
doi: 10.1016/j.ijhydene.2014.02.084 |
[19] | ŞAHIN M E, OKUMUŞ H I. Fuzzy logic controlled parallel connected synchronous buck DC-DC converter for water electrolysis[J]. IEEE Journal of Research, 2013, 59(3): 280-288. |
[20] |
GARRIGÓS A, LIZÁN J L, BLANES J M, et al. Combined maximum power point tracking and output current control for a photovoltaic-electrolyser DC/DC converter[J]. International Journal of Hydrogen Energy, 2014, 39(36): 20907-20919.
doi: 10.1016/j.ijhydene.2014.10.041 |
[21] | DIMROTH F.Photovoltaic hydrogen generation process and device:WO2006042650A3[P]. 2006-12-28. |
[22] |
RAU S, VIERRATH S, OHLMANN J, et al. Highly efficient solar hydrogen generation:An integrated concept joining Ⅲ-V solar cells with PEM electrolysis cells[J]. Energy Technology, 2014, 2 (1), 43-53.
doi: 10.1002/ente.201300116 |
[23] |
FALLISCH A, SCHELLHASE L, FRESKO J, et al. Hydrogen concentrator demonstrator module with 19.8% solar-to-hydrogen conversion efficiency according to the higher heating value[J]. International Journal of Hydrogen Energy, 2017, 42(43): 26804-26815.
doi: 10.1016/j.ijhydene.2017.07.069 |
[24] |
FERRERO D, SANTARELLI M. Investigation of a novel concept for hydrogen production by PEM water electrolysis integrated with multi-junction solar cells[J]. Energy Conversion and Management, 2017, 148: 16-29.
doi: 10.1016/j.enconman.2017.05.059 |
[25] | WANG H S, KONG H, PU Z G, et al. Feasibility of high efficient solar hydrogen generation system integrating photovoltaic cell/photon-enhanced thermionic emission and high-temperature electrolysis cell[J]. Energy Conversion & Management, 2020, 210(4): 112699. |
[26] |
KALEIBARI S, YANPING Z, ABANADES S. Solar-drive high temperature hydrogen production via integrated spectrally split concentrated photovoltaics (SSCPV) and solar power tower[J]. International Journal of Hydrogen Energy, 2019, 44(5): 2519-2532.
doi: 10.1016/j.ijhydene.2018.12.039 |
[27] |
RABADY R I. Solar spectrum management for effective hydrogen production by hybrid thermo-photovoltaic water electrolysis[J]. International Journal of Hydrogen Energy, 2014, 39(13): 6827-6836.
doi: 10.1016/j.ijhydene.2014.02.074 |
[28] |
SARGUNANATHAN S, ELANGO A, MOHIDEEN S T. Performance enhancement of solar photovoltaic cells using effective cooling methods: A review[J]. Renewable and Sustainable Energy Reviews, 2016, 64:382-393.
doi: 10.1016/j.rser.2016.06.024 |
[29] |
SHI X F, QIAN Y, YANG S Y. Fluctuation analysis of a complementary wind-solar energy system and integration for large scale hydrogen production[J]. ACS Sustainable Chemistry and Engineering, 2020, 8(18): 7097-7110.
doi: 10.1021/acssuschemeng.0c01054 |
[30] | 侯慧, 刘鹏, 黄亮, 等. 考虑不确定性的电-热-氢综合能源系统规划[J]. 电工技术学报, 2021, 36(S1):133-144. |
HOU Hui, LIU Peng, HUANG Liang, et al. Planning of electricity-heat-hydrogen integrated energy system considering uncertainties[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 133-144. | |
[31] | 张坤, 吴建东, 毛承雄, 等. 基于模糊算法的风电储能系统的优化控制[J]. 电工技术学报, 2012, 27(10): 235-241. |
ZHANG Kun, WU Jiandong, MAO Chengxiong, et al. Optimal control of energy storage system for wind power generation based on fuzzy algorithm[J]. Transactions of China Electrotechnical Society, 2012, 27(10): 235-241. | |
[32] | 秦羽飞, 葛磊蛟, 王波. 能源互联网群体智能协同控制与优化技术[J]. 华电技术, 2021, 43(9):1-13. |
QIN Yufei, GE Leijiao, WANG Bo. Swarm intelligence collaborative control and optimization technology of Energy Internet[J]. Huadian Technology, 2021, 43(9):1-13. | |
[33] | 赵国涛, 钱国明, 丁泉, 等. 基于区块链的可再生能源消纳激励机制研究[J]. 华电技术, 2021, 43(4): 71-77. |
ZHAO Guotao, QIAN Guoming, DING Quan, et al. Study on incentive mechanism of renewable energy consumption based on blockchain[J]. Huadian Technology, 2021, 43(4): 71-77. | |
[34] | 喻小宝, 郑丹丹, 杨康, 等. “双碳”目标下能源电力行业的机遇与挑战[J]. 华电技术, 2021, 43(6): 21-32. |
YU Xiaobao, ZHENG Dandan, YANG Kang, et al. Opportunities and challenges faced by energy and power industry with the goal of carbon neutrality and carbon peak[J]. Huadian Technology, 2021, 43(6): 21-32. | |
[35] |
CLARKE R E, GIDDEY S, CIACCHI F T, et al. Direct coupling of an electrolyser to a solar PV system for generating hydrogen[J]. International Journal of Hydrogen Energy, 2009, 34(6): 2531-2542.
doi: 10.1016/j.ijhydene.2009.01.053 |
[36] |
DAVID M, OCAMPO-MARTINEZ C, SANCHEZ-PENA R. Advances in alkaline water electrolyzers: A review[J]. Journal of Energy Storage, 2019, 23(6): 392-403.
doi: 10.1016/j.est.2019.03.001 |
[37] |
OGUMEREM G S, PISTIKOPOULOS E N. Parametric optimization and control for a smart Proton Exchange Membrane Water Electrolysis(PEMWE) system[J]. Journal of Process Control, 2020, 91:37-49.
doi: 10.1016/j.jprocont.2020.05.002 |
[38] |
KAMLUNGSUA K, SU P C, CHAN S H. Hydrogen generation using solid oxide electrolysis cells[J]. Fuel Cells, 2020, 20(6):644-649.
doi: 10.1002/fuce.202070602 |
[39] | SAPOUNTZI F M, GRACIA J M, WESTSTRATE C J, et al. Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas[J]. Progress in Energy & Combustion Science, 2017, 58:1-35. |
[40] | 刘明义, 于波, 徐景明. 固体氧化物电解水制氢系统效率[J]. 清华大学学报(自然科学版), 2009, 49(6):868-871. |
LIU Mingyi, YU Bo, XU Jingming, et al. Efficiency of solid oxide water electrolysis system for hydrogen production[J]. Journal of Tsinghua University(Science and Technology), 2009, 49(6): 868-871. | |
[41] | 王正一. 兼顾弃风率与经济性的风电制氢容量规划研究[D]. 大连: 大连理工大学, 2021. |
[42] |
ESCOBAR-YONOFF R, MAESTRE-CAMBRO D, CHARRY S, et al. Performance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generation[J]. Heliyon, 2021, 7(3):e06506.
doi: 10.1016/j.heliyon.2021.e06506 |
[43] |
DANESHPOUR R, MEHRPOOYA M. Design and optimization of a combined solar thermophotovoltaic power generation and solid oxide electrolyser for hydrogen production[J]. Energy Conversion and Management, 2018, 176:274-286.
doi: 10.1016/j.enconman.2018.09.033 |
[44] |
PATCHARAVORACHOT Y, THONGDEE S, SAEBEA D, et al. Performance comparison of solid oxide steam electrolysis cells with/without the addition of methane[J]. Energy Conversion and Management, 2016, 120: 274-286.
doi: 10.1016/j.enconman.2016.04.100 |
[45] |
CHEN C, XIA Q, FENG S, et al. A novel solar hydrogen production system integrating high temperature electrolysis with ammonia based thermochemical energy storage[J]. Energy Conversion and Management, 2021, 237:114143.
doi: 10.1016/j.enconman.2021.114143 |
[46] | DU X, LIU W, ZHANG Z, et al. Low-energy catalytic electrolysis for simultaneous hydrogen evolution and lignin depolymerization[J]. Journal of Materials Chemistry A: Energy and Sustainability, 2017, 10(5):847-854. |
[47] |
KIM J, JUN A, GWON O, et al. Hybrid-solid oxide electrolysis cell:A new strategy for efficient hydrogen production[J]. Nano Energy, 2018, 44:121-126.
doi: 10.1016/j.nanoen.2017.11.074 |
[48] |
SCHEFOLD J, BRISSE A, POEPKE H. Long-term steam electrolysis with electrolyte-supported solid oxide cells[J]. Electrochimica Acta, 2015, 179:161-168.
doi: 10.1016/j.electacta.2015.04.141 |
[49] |
LIU C Y, HU L H, SUNG C C. Micro-protective layer for lifetime extension of solid polymer electrolyte water electrolysis[J]. Journal of Power Sources, 2012, 207:81-85.
doi: 10.1016/j.jpowsour.2012.01.045 |
[50] | LI A, OOKA H, BONNET N, et al. Stable potential windows for long-term electrocatalysis by manganese oxides under acidic conditions[J]. Angewandte Chemie, 2019, 58(15): 5054-5058. |
[51] | 孟源, 樊小朝, 史瑞静, 等. 基于机会约束及N-1安全约束的风光联合储能系统选址定容优化[J]. 电网技术, 2021, 45(5): 1886-1893. |
MENG Yuan, FAN Xiaozhao, SHI Ruijing, et al. Optimization of location and capacity for wind-solar-energy storage combined system based on chance constraints and N-1 security constraints[J]. Power System Technology, 2021, 45(5): 1886-1893. | |
[52] | 李亮, 唐巍, 白牧可, 等. 考虑时序特性的多目标分布式电源选址定容规划[J]. 电力系统自动化, 2013, 37(3): 58-63,128. |
LI Liang, TANG Wei, BAI Muke, et al. Multi-objective locating and sizing of distributed generators based on time-sequence characteristics[J]. Automation of Electric Power Systems, 2013, 37(3): 58-63,128. | |
[53] | 王广玲. 微网风光储容量优化配置[D]. 北京: 北方工业大学, 2021. |
[54] | 乔延辉, 韩爽, 许彦平, 等. 基于天气分型的风光出力互补性分析方法[J]. 电力系统自动化, 2021, 45(2):82-88. |
QIAO Yanhui, HAN Shuang, XU Yanping, et al. Analysis method for complementarity between wind and photovoltaic power outputs based on weather classification[J]. Automation of Electric Power Systems, 2021, 45(2):82-88. | |
[55] | 王芃, 刘伟佳, 林振智, 等. 基于场景分析的风电场与电转气厂站协同选址规划[J]. 电力系统自动化, 2017, 41(6): 20-28. |
WANG Peng, LIU Weijia, LIN Zhenzhi, et al. Scenario analysis based collaborative site selection planning of wind farms and power-to-gas plants[J]. Automation of Electric Power Systems, 2017, 41(6): 20-28. | |
[56] |
VALENCIAGA F, EVANGELISTA C A. Control design for an autonomous wind based hydrogen production system[J]. International Journal of Hydrogen Energy, 2010, 35(11): 5799-5807.
doi: 10.1016/j.ijhydene.2010.02.096 |
[57] | 沈小军, 聂聪颖, 吕洪. 计及电热特性的离网型风电制氢碱性电解槽阵列优化控制策略[J]. 电工技术学报, 2021, 36(3): 463-472. |
SHEN Xiaojun, NIE Congying, LYU Hong. Optimal control strategy of off-grid hydrogen production alkaline electrolyzer array considering electrothermal characteristics[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 463-472. | |
[58] | HUANG J, XIE Y, YAN L, et al. Decoupled amphoteric water electrolysis and its integration with Mn-Zn battery for flexible utilization of renewables[J]. Energy & Environmental Science, 2021, 14(2):883-889. |
[59] |
ONDA K, KYAKUNO T, HATTORI K, et al. Prediction of production power for high-pressure hydrogen by high-pressure water electrolysis[J]. Journal of Power Sources, 2004, 132(1/2): 64-70.
doi: 10.1016/j.jpowsour.2004.01.046 |
[60] | KOH J H, YOON D J, CHANG H O H. Simple electrolyzer model development for high-temperature electrolysis system analysis using solid oxide electrolysis cell[J]. Journal of Nuclear Science & Technology, 2010, 47(7): 599-607. |
[61] |
LIN M Y, HOURNG L W, KUO C W. The effect of magnetic force on hydrogen production efficiency in water electrolysis[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1311-1320.
doi: 10.1016/j.ijhydene.2011.10.024 |
[62] |
JANG D, CHO H S, KANG S. Numerical modeling and analysis of the effect of pressure on the performance of an alkaline water electrolysis system[J]. Applied Energy, 2021, 287(1): 116554.
doi: 10.1016/j.apenergy.2021.116554 |
[63] |
KOBAYASHI Y, KOSAKA K, YAMAMOTO T, et al. A solid polymer water electrolysis system utilizing natural circulation[J]. International Journal of Hydrogen Energy, 2014, 39(29): 16263-16274.
doi: 10.1016/j.ijhydene.2014.07.153 |
[64] |
ESMAILI P, DINCER I, NATERER G F. Energy and exergy analyses of electrolytic hydrogen production with molybdenum-oxo catalysts[J]. International Journal of Hydrogen Energy, 2012, 37(9): 7365-7372.
doi: 10.1016/j.ijhydene.2012.01.076 |
[65] |
MA Y, DONG X L, WANG Y, et al. Decoupling hydrogen and oxygen production in acidic water electrolysis using a polytriphenylamine-based battery electrode[J]. Angewandte Chemie International Edition, 2018, 57(11): 2904-2908.
doi: 10.1002/anie.201800436 |
[1] | 邹风华, 朱星阳, 殷俊平, 孟诗语, 江海燕, 陈爱康, 刘澜. “双碳”目标下建筑能源系统发展趋势分析[J]. 综合智慧能源, 2024, 46(8): 36-40. |
[2] | 邓振宇, 汪茹康, 徐钢, 云昆, 王颖. 综合能源系统中热电联产机组故障预警现状[J]. 综合智慧能源, 2024, 46(8): 67-76. |
[3] | 王俊, 田浩, 赵二岗, 舒展, 万子镜. 计及电动汽车共享储能特性的园区柔性资源低碳运行控制方法[J]. 综合智慧能源, 2024, 46(6): 16-26. |
[4] | 龚钢军, 王路遥, 常卓越, 柳旭, 邢汇笛. 基于能源枢纽的综合能源信息物理系统安全防护架构研究[J]. 综合智慧能源, 2024, 46(5): 65-72. |
[5] | 李云, 周世杰, 胡哲千, 梁均原, 肖雷鸣. 基于NSGA-Ⅱ-WPA的综合能源系统多目标优化调度[J]. 综合智慧能源, 2024, 46(4): 1-9. |
[6] | 史明明, 朱睿, 刘瑞煌. 交直流电力系统与供热系统联合经济调度[J]. 综合智慧能源, 2024, 46(4): 10-16. |
[7] | 陈勇, 肖雷鸣, 王井南, 吴健. 基于场景扩充的低碳综合能源系统高可靠性容量规划方法[J]. 综合智慧能源, 2024, 46(4): 24-33. |
[8] | 王京龙, 王晖, 杨野, 郑颖颖. 考虑多重不确定性的电-热-气综合能源系统协同优化方法[J]. 综合智慧能源, 2024, 46(4): 42-51. |
[9] | 钟永洁, 王紫东, 左建勋, 王常青, 李靖霞, 纪陵. 计及多时段尺度与地域分层的多能互补系统经济调度[J]. 综合智慧能源, 2024, 46(4): 52-59. |
[10] | 徐聪, 胡永锋, 张爱平, 由长福. 基于特征筛选的综合能源系统多元负荷日前-日内预测[J]. 综合智慧能源, 2024, 46(3): 45-53. |
[11] | 周冠廷, 徐凯, 刘建伟, 鹿百兴, 张乔, 陈新. 基于图论的区域综合能源服务商交易路径优化[J]. 综合智慧能源, 2024, 46(2): 49-58. |
[12] | 张力, 金立, 任炬光, 刘小兵. 计及气象因素与分时电价影响的综合能源系统负荷调控策略研究[J]. 综合智慧能源, 2024, 46(1): 18-27. |
[13] | 方刚, 王静, 张波波, 王俊哲. 基于Pareto解集的工业园区微网优化配置研究[J]. 综合智慧能源, 2024, 46(1): 49-55. |
[14] | 万明忠, 王元媛, 李峻, 鹿院卫, 赵甜, 吴玉庭. 压缩空气储能技术研究进展及未来展望[J]. 综合智慧能源, 2023, 45(9): 26-31. |
[15] | 薛福, 马晓明, 游焰军. 储能技术类型及其应用发展综述[J]. 综合智慧能源, 2023, 45(9): 48-58. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||